首页> 外文OA文献 >Correcting for Bias of Molecular Confinement Parameters Induced by Small Time Series Sample Sizes in Single-Molecule Trajectories Containing Measurement Noise
【2h】

Correcting for Bias of Molecular Confinement Parameters Induced by Small Time Series Sample Sizes in Single-Molecule Trajectories Containing Measurement Noise

机译:校正小分子诱导分子限制参数的偏差   包含单分子轨迹的时间序列样本大小   测量噪音

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several single-molecule studies aim to reliably extract parameterscharacterizing molecular confinement or transient kinetic trapping fromexperimental observations. Pioneering works from single particle tracking inmembrane diffusion studies [Kusumi et al., Biophysical J., 1993] appealed toMean Square Displacement tools for extracting diffusivity and other parametersquantifying the degree of confinement. More recently, the practical utility ofsystematically treating multiple noise sources (including noise induced byrandom photon counts) through likelihood techniques have been more broadlyrealized in the SPT community. However, bias induced by finite time seriessample sizes has not received great attention. Mitigating parameter biasinduced by finite sampling is important to any scientific endeavor aiming forhigh accuracy, but correcting for bias is also often an important step in theconstruction of optimal parameter estimates. In this article, it isdemonstrated how a popular model of confinement can be corrected for finitesample bias in situations where the underlying data exhibits Brownian diffusionand observations are measured with non-negligible experimental noise (e.g.,noise induced by finite photon counts). The work of Tang and Chen [J.Econometrics, 2009] is extended to correct for bias in the estimated corralradius (a parameter commonly used to quantify confinement in SPT studies) inthe presence of measurement noise. It is shown that the approach presented iscapable of reliably extracting the corral radius using only hundreds ofdiscretely sampled observations in situations where other methods (includingMSD and Bayesian techniques) would encounter serious difficulties. The abilityto accurately statistically characterize transient confinement suggests newtechniques for quantifying confined and/or hop diffusion in complexenvironments.
机译:几项单分子研究旨在从实验观察中可靠地提取表征分子限制或瞬态动力学捕获的参数。单颗粒跟踪膜扩散研究的开拓性工作[Kusumi et al。,Biophysical J.,1993]吸引了Mean Square位移工具来提取扩散率和其他参数来限制封闭程度。最近,在SPT社区中,通过似然技术对多个噪声源(包括由随机光子计数引起的噪声)进行系统处理的实际应用已得到广泛应用。但是,由有限时间序列样本量引起的偏差并没有引起足够的重视。减少有限采样所引起的参数偏差对于任何旨在实现高精度的科学努力都是重要的,但是校正偏差通常也是构造最佳参数估计值的重要步骤。在本文中,它演示了在基础数据表现出布朗扩散且观察结果是用不可忽略的实验噪声(例如有限光子计数引起的噪声)进行测量的情况下,如何针对有限样本偏差校正流行的封闭模型。 Tang和Chen [J.Econometrics,2009]的工作扩展到在存在测量噪声的情况下校正估计的Corralradius(SPT研究中通常用于量化限制的参数)的偏差。结果表明,在其他方法(包括MSD和贝叶斯技术)遇到严重困难的情况下,所提出的方法仅使用数百个离散采样的观测值就能够可靠地提取出珊瑚半径。准确地统计表征瞬态约束的能力提出了用于量化复杂环境中的约束和/或跃点扩散的新技术。

著录项

  • 作者

    Calderon, Christopher P.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号